Classification of Cardiac Signals Using Time Domain Methods

نویسندگان

  • B. Anuradha
  • K. Suresh Kumar
  • V. C. Veera Reddy
چکیده

Electrocardiography (ECG) deals with the electrical activity of the heart. The condition of cardiac health is given by ECG and heart rate. A study of the non-linear dynamics of ECG signals for arrhythmia characterization is considered. The statistical analysis of the calculated features indicate that they differ significantly between normal heart rhythm and the different arrhythmia types and hence, can be rather useful in ECG arrhythmia detection. The discrimination of ECG signals using statistical parameters is of crucial importance in the cardiac disease therapy. The four statistical parameters considered for cardiac arrhythmia classification of the ECG signals are the standard deviation of the NN intervals (SDNN), the standard deviation of differences between adjacent NN intervals (SDSD), the root mean square successive difference of intervals which are extracted from heart rate signals (RMSSD) and the proportion derived by dividing NN50 by the total number of NN intervals (pNN50). The inclusion of Adaptive neuro fuzzy interface system (ANFIS) in the complex investigating algorithms yield very interesting recognition and classification capabilities across a broad spectrum of biomedical problem domains. Using the computed statistical parameter classification was done using Analytical method and an accuracy of 66% was achieved. The ANFIS method was compared with Analytical method. ANFIS classifier was used for the classification and an accuracy of 94% was achieved which shows that ANFIS classifier is the best of the two methods compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Complex feature analysis of center of pressure signal for age-related subject classification

Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...

متن کامل

Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)

Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders

Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008